1 $f(x) = \frac{\frac{x+1}{x-1} + 1}{\frac{x+1}{x-1} - 1}$	M1	correct expression
$ \frac{x-1}{x+1+x-1} = \frac{x+1+x-1}{x+1-x+1} = \frac{2x}{2} = x^* $	M1 E1	without subsidiary denominators e.g. = $\frac{x+1+x-1}{x-1} \times \frac{x-1}{x+1-x+1}$
$f^{-1}(x) = f(x)$	B1	stated, or shown by inverting
Symmetrical about $y = x$.	B1 [5]	

4(i) $y = 1 + 2\sin x \ y \leftrightarrow x$ $\Rightarrow x = 1 + 2\sin y$	M1	Attempt to invert
$ \Rightarrow x - 1 = 2 \sin y \Rightarrow (x - 1)/2 = \sin y \Rightarrow y = \arcsin(\frac{x - 1}{2})^* $	A1 E1	
Domain is $-1 \le x \le 3$	B1	
(ii) A is $(\pi/2, 3)$ B is $(1, 0)$ C is $(3, \pi/2)$	B1cao B1cao B1ft	Allow $\pi/2 = 1.57$ or better ft on their A
	[7]	

5 $x = \frac{1}{2}$ $\cos \theta = \frac{1}{2}$ $\Rightarrow \theta = \frac{\pi}{3}$	B1 M1 A1 [3] M1A0 for 1.04 or 60°	
--	---	--

6	$fg(x) = \ln(x^3)$ = 3 ln x	M1 A1	$ \ln(x^3) = 3 \ln x $
	Stretch s.f. 3 in y direction	B1 [3]	

7	(i)	At $P(a, a) g(a) = a$ so $\frac{1}{2}(e^{a} - 1) = a$			
		$\Rightarrow e^a = 1 + 2a *$	B 1	NB AG	
			[1]		
	(ii)	$A = \int_0^a \frac{1}{2} (e^x - 1) dx$	M1	correct integral and limits	limits can be implied from subsequent work
		$=\frac{1}{2}\left[e^{x}-x\right]_{0}^{a}$	B 1	integral of $e^x - 1$ is $e^x - x$	
		$= \frac{1}{2} (e^{a} - a - e^{0})$	A1		
		$=\frac{1}{2}(1+2a-a-1)=\frac{1}{2}a^{*}$	A1	NB AG	
		area of triangle = $\frac{1}{2}a^2$	B1		
		area between curve and line = $\frac{1}{2}a^2 - \frac{1}{2}a$	B1cao [6]	mark final answer	
	(iii)	$y = \frac{1}{2}(e^x - 1)$ swap x and y			
		$x = \frac{1}{2} (e^{y} - 1)$			
		$\Rightarrow 2x = e^{v} - 1$	M1	Attempt to invert – one valid step	merely swapping x and y is not 'one step'
		$\Rightarrow 2x + 1 = e^{y}$	A1		
		$\Rightarrow \ln(2x+1) = y^*$	A1	$y = \ln(2x + 1)$ or $g(x) = \ln(2x + 1)$ AG	apply a similar scheme if they start with $g(x)$ and invert to get $f(x)$.
		$\Rightarrow g(x) = \ln(2x+1)$			or g f(x) = g(($e^x - 1$)/2) M1
		Sketch: recognisable attempt to reflect in $y = x$	M 1	through O and (a, a)	$= \ln(1 + e^x - 1) = \ln(e^x) A1 = x A1$
		Good shape	A1	no obvious inflexion or TP, extends to third quadrant, without gradient becoming too negative	similar scheme for fg See appendix for examples
			[5]		

7	(iv)	$f'(x) = \frac{1}{2} e^x$	B1		
		g'(x) = 2/(2x+1)	M1	1/(2x + 1) (or $1/u$ with $u = 2x + 1)$	
			A1	× 2 to get $2/(2x + 1)$	
		g'(a) = 2/(2a + 1), f'(a) = $\frac{1}{2}$ e ^a	B 1	either $g'(a)$ or $f'(a)$ correct soi	
		so $g'(a) = 2/e^a$ or $f'(a) = \frac{1}{2}(2a+1)$	M1	substituting $e^a = 1 + 2a$	aither way round
		$= 1/(\frac{1}{2}e^{a}) = (a+1)/2$	A1	establishing f '(a) = 1/ g '(a)	either way round
		[= 1/f'(a)] $[= 1 '(a)]$			
		tangents are reflections in $y = x$	B1	must mention tangents	
			[7]		

8	(i)	Range is $-1 \le y \le 3$	M1	-1, 3
			A1	$-1 \le y \le 3 \text{ or } -1 \le f(x) \le 3 \text{ or } [-1, 3] \text{ (not } -1 \text{ to } 3, -1 \le x \le 3, -1 < y < 3 \text{ etc})$
			[2]	
	(ii)	$y = 1 - 2\sin x \ x \leftrightarrow y$		[can interchange x and y at any stage]
		$x = 1 - 2\sin y \Longrightarrow x - 1 = -2\sin y$	M1	attempt to re-arrange
		$\Rightarrow \sin y = (1-x)/2$	A1	o.e. e.g. $\sin y = (x - 1)/(-2)$ (or $\sin x = (y - 1)/(-2)$)
		$\Rightarrow y = \arcsin\left[(1-x)/2\right]$	A1	or $f^{-1}(x) = \arcsin [(1 - x)/2]$, not x or $f^{-1}(y) = \arcsin [1 - y)/2]$ (viz must have swapped x and y for final 'A' mark).
			[3]	$\arcsin [(x-1)/-2]$ is A0
	(iii)	$f'(x) = -2\cos x$	M1	condone 2cos x
		\Rightarrow f'(0) = -2	A1	cao
		\Rightarrow gradient of $y = f^{-1}(x)$ at $(1, 0) = -\frac{1}{2}$	A1	not 1/- 2
			[3]	