

$\text { 2 (i) } \begin{aligned} \mathrm{fg}(x) & =\mathrm{f}(x-2) \\ & =(x-2)^{2} \\ \operatorname{gf}(x) & =\mathrm{g}\left(x^{2}\right)=x^{2}-2 . \end{aligned}$	M1 A1 A1 [3]	forming a composite function mark final answer If fg and gf the wrong way round, M1A0A0
(ii)	B1ft B1ft [2]	fg - must have (2, 0)labelled (or inferable from scale). Condone no y-intercept, unless wrong gf - must have $(0,-2)$ labelled (or inferable from scale) Condone no x-intercepts, unless wrong Allow ft only if $f g$ and $g f$ are correct but wrong way round.

$3 \operatorname{gf}(x)=|1-x|$ B1

4(i)	$y=1+2 \sin x y \leftrightarrow x$		
\Rightarrow	$x=1+2 \sin y$		
\Rightarrow	$x-1=2 \sin y$		
\Rightarrow	$(x-1) / 2=\sin y$		
\Rightarrow	$y=\arcsin \left(\frac{x-1}{2}\right)^{*}$	M1	Attempt to invert
Domain is $-1 \leq x \leq 3$	A1		
	E1		
(ii)A is $(\pi / 2,3)$ B is $(1,0)$ C is $(3, \pi / 2)$	B1		
		B1cao	Allow $\pi / 2=1.57$ or better
	B1cao	ft on their A	
	[7]		

5		$\begin{aligned} & x=1 / 2 \\ & \cos \theta=1 / 2 \\ & \theta=\pi / 3 \end{aligned}$	B1 M1 A1 [3]	M1A0 for 1.04... or 60°

6	fg $(x)=\ln \left(x^{3}\right)$ $=3 \ln x$	M1	$\ln \left(x^{3}\right)$ Stretch s.f. 3 in y direction
		A1	$=3 \ln x$
		B1	

7 (i)	$\begin{aligned} & \text { At } \mathrm{P}(a, a) \mathrm{g}(a)=a \text { so } 1 / 2\left(\mathrm{e}^{a}-1\right)=a \\ & \Rightarrow \quad \mathrm{e}^{a}=1+2 a^{*} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { [1] } \end{aligned}$	NB AG	
(ii)	$\begin{aligned} & A=\int_{0}^{a} \frac{1}{2}\left(\mathrm{e}^{x}-1\right) \mathrm{d} x \\ & =\frac{1}{2}\left[\mathrm{e}^{x}-x\right]_{0}^{a} \\ & =1 / 2\left(\mathrm{e}^{a}-a-\mathrm{e}^{0}\right) \\ & =1 / 2(1+2 a-a-1)=1 / 2 a^{*} \\ & \text { area of triangle }=1 / 2 a^{2} \\ & \text { area between curve and line }=1 / 2 a^{2}-1 / 2 a \end{aligned}$	M1 B1 A1 A1 B1 B1cao [6]	correct integral and limits integral of $\mathrm{e}^{x}-1$ is $\mathrm{e}^{\mathrm{x}}-x$ NB AG mark final answer	limits can be implied from subsequent work
(iii)	$\begin{array}{ll} \hline y= & 1 / 2\left(\mathrm{e}^{x}-1\right) \operatorname{swap} x \text { and } y \\ & x=1 / 2\left(\mathrm{e}^{y}-1\right) \\ \Rightarrow \quad & 2 x=\mathrm{e}^{y}-1 \\ \Rightarrow \quad & 2 x+1=\mathrm{e}^{y} \\ \Rightarrow \quad & \ln (2 x+1)=y^{*} \\ \Rightarrow \quad & \mathrm{~g}(x)=\ln (2 x+1) \end{array}$ Sketch: recognisable attempt to reflect in $y=x$ Good shape	M1 A1 A1 M1 A1 [5]	Attempt to invert - one valid step $\begin{aligned} & y=\ln (2 x+1) \text { or } \\ & \mathrm{g}(x)=\ln (2 x+1) \text { AG } \end{aligned}$ through O and (a, a) no obvious inflexion or TP, extends to third quadrant, without gradient becoming too negative	merely swapping x and y is not 'one step' apply a similar scheme if they start with $\mathrm{g}(x)$ and invert to get $\mathrm{f}(x)$. or $\mathrm{g}(x)=\mathrm{g}\left(\left(\mathrm{e}^{x}-1\right) / 2\right) \mathrm{M} 1$ $=\ln \left(1+\mathrm{e}^{x}-1\right)=\ln \left(\mathrm{e}^{x}\right) \mathrm{A} 1=x \mathrm{~A} 1$ similar scheme for fg See appendix for examples

7 (iv)	tangents are reflections in $y=x$	B1 M1 A1 B1 M1 A1 B1 [7]	$\begin{aligned} & 1 /(2 x+1) \text { (or } 1 / u \text { with } \\ & u=2 x+1) \ldots \\ & \ldots \times 2 \text { to get } 2 /(2 x+1) \end{aligned}$ either $\mathrm{g}^{\prime}(a)$ or $\mathrm{f}^{\prime}(a)$ correct soi substituting $\mathrm{e}^{a}=1+2 a$ establishing $\mathrm{f}^{\prime}(a)=1 / \mathrm{g}^{\prime}(a)$ must mention tangents	either way round

8	(i)	Range is $-1 \leq y \leq 3$	M1 A1 [2]	$\begin{aligned} & -1,3 \\ & -1 \leq y \leq 3 \text { or }-1 \leq \mathrm{f}(x) \leq 3 \text { or }[-1,3] \text { (not }-1 \text { to } 3,-1 \leq x \leq 3,-1<y<3 \text { etc) } \end{aligned}$
	(ii)	$\begin{aligned} & y=1-2 \sin x \quad x \leftrightarrow y \\ & x=1-2 \sin y \Rightarrow x-1=-2 \sin y \\ & \Rightarrow \quad \sin y=(1-x) / 2 \\ & \Rightarrow \quad y=\arcsin [(1-x) / 2] \end{aligned}$	M1 A1 A1 [3]	[can interchange x and y at any stage] attempt to re-arrange o.e. e.g. $\sin y=(x-1) /(-2)($ or $\sin x=(y-1) /(-2))$ or $\mathrm{f}^{-1}(x)=\arcsin [(1-x) / 2]$, not x or $\left.\mathrm{f}^{-1}(y)=\arcsin [1-y) / 2\right]$ (viz must have swapped x and y for final 'A' mark). $\arcsin [(x-1) /-2]$ is A0
	(iii)	$\begin{aligned} & \mathrm{f}^{\prime}(x)=-2 \cos x \\ & \Rightarrow \quad \mathrm{f}^{\prime}(0)=-2 \\ & \Rightarrow \quad \text { gradient of } y=\mathrm{f}^{-1}(x) \text { at }(1,0)=-1 / 2 \end{aligned}$	M1 A1 A1 [3]	condone $2 \cos x$ cao not 1/- 2

